NCERT Solutions Class 12
-
NCERT Solutions-Mathematics
- Relations and Functions : NCERT Solutions – Class 12 Maths (Ex 1)
- Relations and Functions : NCERT Solutions – Class 12 Maths (Ex 2)
- Relations and Functions : NCERT Solutions – Class 12 Maths (Ex 3)
- Relations and Functions : NCERT Solutions – Class 12 Maths (Ex 4)
- Relations and Functions : NCERT Solutions – Class 12 Maths (Ex 5)
- Inverse Trigonometric Function : NCERT Solutions – Class 12 Maths (Ex 1)
- Inverse Trigonometric Function : NCERT Solutions – Class 12 Maths (Ex 2)
- Inverse Trigonometric Function : NCERT Solutions – Class 12 Maths (Ex 3)
- Matrices : NCERT Solutions – Class 12 Maths (Ex 1)
- Matrices : NCERT Solutions – Class 12 Maths (Ex 2)
- Matrices : NCERT Solutions – Class 12 Maths (Ex 3)
- Matrices : NCERT Solutions – Class 12 Maths (Ex 4)
- Matrices : NCERT Solutions – Class 12 Maths (Ex 5)
- Determinants : NCERT Solutions – Class 12 Maths (Ex 1)
- Determinants : NCERT Solutions – Class 12 Maths (Ex 2)
- Determinants : NCERT Solutions – Class 12 Maths (Ex 3)
- Determinants : NCERT Solutions – Class 12 Maths (Ex 4)
- Determinants : NCERT Solutions – Class 12 Maths (Ex 5)
- Determinants : NCERT Solutions – Class 12 Maths (Ex 6)
- Determinants : NCERT Solutions – Class 12 Maths (Ex 7)
- Continuity and Differentiability : NCERT Solutions – Class 12 Maths (Ex 1)
- Continuity and Differentiability : NCERT Solutions – Class 12 Maths (Ex 2)
- Continuity and Differentiability : NCERT Solutions – Class 12 Maths (Ex 3)
- Continuity and Differentiability : NCERT Solutions – Class 12 Maths (Ex 4)
- Continuity and Differentiability : NCERT Solutions – Class 12 Maths (Ex 5)
- Continuity and Differentiability : NCERT Solutions – Class 12 Maths (Ex 6)
- Continuity and Differentiability : NCERT Solutions – Class 12 Maths (Ex 7)
- Continuity and Differentiability : NCERT Solutions – Class 12 Maths (Ex 8)
- Continuity and Differentiability : NCERT Solutions – Class 12 Maths (Ex 9)
-
NCERT Solutions-Chemistry
- Aldehydes, Ketones and Carboxylic Acids : NCERT Solutions – Class 12 Chemistry
- Alcohols, Phenols and Ethers : NCERT Solutions – Class 12 Chemistry
- Amines : NCERT Solutions – Class 12 Chemistry
- Biomolecules : NCERT Solutions – Class 12 Chemistry
- Chemical Kinetics : NCERT Solutions – Class 12 Chemistry
- Chemistry in Everyday Life : NCERT Solutions – Class 12 Chemistry
- Coordination Compounds : NCERT Solutions – Class 12 Chemistry
- Electrochemistry : NCERT Solutions – Class 12 Chemistry
- General Principles and Processes of Isolation of Elements : NCERT Solutions – Class 12 Chemistry
- Haloalkanes and Haloarenes : NCERT Solutions – Class 12 Chemistry
- Polymers : NCERT Solutions – Class 12 Chemistry
- Surface Chemistry : NCERT Solutions – Class 12 Chemistry
- The d-and f-Block Elements : NCERT Solutions – Class 12 Chemistry
- The p-Block Elements : NCERT Solutions – Class 12 Chemistry
- The Solid State : NCERT Solutions – Class 12 Chemistry
- Solutions : NCERT Solutions – Class 12 Chemistry
-
NCERT Solutions-Biology
-
NCERT Solutions-Physics
- Electrostatic Potential And Capacitance : NCERT Solutions – Class 12 Physics
- Electric Charges And Fields : NCERT Solutions – Class 12 Physics
- Semiconductor Electronics: Materials, Devices And Simple Circuits : NCERT Solutions – Class 12 Physics
- Ray Optics And Optical Instruments : NCERT Solutions – Class 12 Physics
- Nuclei : NCERT Solutions – Class 12 Physics
- Moving Charges And Magnetism : NCERT Solutions – Class 12 Physics
- Magnetism And Matter : NCERT Solutions – Class 12 Physics
- Electromagnetic Induction : NCERT Solutions – Class 12 Physics
- Dual Nature Of Radiation And Matter : NCERT Solutions – Class 12 Physics
- Current Electricity : NCERT Solutions – Class 12 Physics
- Communication Systems : NCERT Solutions – Class 12 Physics
- Atoms : NCERT Solutions – Class 12 Physics
- Alternating Current : NCERT Solutions – Class 12 Physics
Determinants : NCERT Solutions – Class 12 Maths (Ex 1)
Exercise 4.1
Evaluate the following determinants in Exercise 1 and 2.
1.
Ans. =
=
= 18
2. (i)
(ii)
Ans. (i) =
=
= 1
(ii) =
= =
3. If A =
then show that
Ans. Given: A = then 2A =
=
L.H.S. = =
R.H.S. =
= =
Since L.H.S. = R.H.S.
Hence, proved.
4. If A = then show that
Ans. Given: A = then 3A =
=
L.H.S. =
= = 3 x 36 = 108
R.H.S. =
= 27 [1 (4 – 0)] = 27 x 4 = 108
Since L.H.S. = R.H.S.
Hence, proved.
5. Evaluate the determinants:
(i)
(ii)
(iii)
(iv)
Ans. Evaluate the determinants:
(i) Given:
Expanding along first row,
=
= =
(ii) Given:
Expanding along first row,
=
=
= 21 + 20 + 5 = 46
(iii) Given:
Expanding along first row,
=
= 0 + 6 – 6 = 0
(iv) Given:
Expanding along first row,
=
= = 5
6. If A = find
Ans. Given: A =
=
Expanding along first row,
=
=
=
= = 0
7. Find the value of if:
(i)
(ii)
Ans. (i) Given:
(ii)
8. If then
is equal to:
(A) 6
(B)
(C)
(D) 0
Ans. Given:
Therefore, option (B) is correct.